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Preface

The objective of this text is to provide a basic treatment of all of the important aspects of discrete-event
simulation, with particular emphasis on applications in manufacturing, services, and computing. The fourth
edition, like earlier editions, is meant for an upper-level-undergraduate or master's-level introduction to
simulation or for a second course with applications. We have updated the material extensively, revised some
chapters completely, and added a new chapter on the simulation of computer networks. The associated Web
site. www.bcnn.net is now closely integrated with the text, and all students and instructors should visit
the site.

Chapter 1, Introduction to Simulation, has been generally updated, and every example in Chapter 2,
Simulation Examples, has an Excel spreadsheet solution on the Web site. Exercises have been prepared that
require downloading these spreadsheet solutions and using them. To reflect the continuing evolution of sim-
ulation software, Chapter 3, General Principles, has been modernized to include properties and operations of
current simulation languages; in Chapter 4, Simulation Software, simulation in Java replaces C++. We also
have maintained an up-to-date discussion of the features of currently available simulation software.
Simulation software changes so rapidly, however, that we point to the Web sites of all of the software vendors
mentioned in the text.

Chapter 5, Statistical Models in Simulation, incorporates some additional models: the beta and negative
binomial distributions and the nonstationary Poisson process. These are backed up by new material on
simulating (Chapter 8, Random-Variate Generation) and fitting (Chapter 9, Input Modeling) the models.
For clarity, Chapter 8 has been substantially reorganized. In Chapter 7, Random-Number Generation, we
have deemphasized statistical testing of random-number generators since the period length of moder gen-
erators has become so long that sampling-based tests are no longer feasible.

Chapter 10, Verification and Validation, replaces hypothesis testing by a confidence-interval approach
for input-output validation.

The core chapters on the analysis of simulation output are Chapter 11, Output Analysis for a Single
Model, and Chapter 12, Comparison and Evaluation of Alternative System Designs. Chapter 11 has been sig-
nificantly reorganized, and there is new material on prediction intervals and on estimating probabilities and
quantiles from only summary statistics. Chapter 12 contains a new procedure for screening a large number
of system designs to extract a smaller group of the best.

xiii
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Chapter 13, Simulation of Manufacturing and Material-Handling Systems, adds an extended example
and analysis of a small manufacturing system.

Chapter 14, Simulation of Computer Systems, replaces the discussion of C++ simulation tools for com-
puter simulation with one focused on Java in general and on the SSFNet simulator in particular. Chapter 15,
Simulation of Computer Networks, is new. The Web site has examples (in Java) of simulations discussed in
this Chapter and provides extensive links to supporting material.

Discrete-Event System Simulation can serve as a textbook in the following types of courses:

An introductory simulation course in engineering, computer science, or management (Chapters 1-9 and
selected parts of Chapters 1012 when no companion language text is used; if a companion language text is
used, skip Chapter 4, and use the application Chapters 13, 14, and 15, as appropriate);

A second course in simulation (all of Chapters 10-12, a companion language text, and an outside project;
add Chapter 13, 14, or 15, as appropriate)

We gratefully acknowledge the cheerful aid of Gamze Tokol and Dave Goldsman in converting some of
the chapters to IXTgX for those coauthors who do not speak the language, and the assistance of Feng Yang,
who checked the references and exercises in many chapters.

JERRY BANKS
JOHN S. CARSON Il
BARRY L. NELSON

DaviD M. NicoL
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Introduction to Simulation

A simulation is the imitation of the operation of a real-world process or system over time. Whether done by
hand or on a computer, simulation involves the generation of an artificial history of a system and the obser-
vation of that artificial history to draw inferences concerning the operating characteristics of the real system.

The behavior of a system as it evolves over time is studied by developing a simulation model. This
model usually takes the form of a set of assumptions concerning the operation of the system. These assump-
tions are expressed in mathematical, logical, and symbolic relationships between the entities, or objects of
interest, of the system. Once developed and validated, a model can be used to investigate a wide variety of
“what if” questions about the real-world system. Potential changes to the system can first be simulated, in
order to predict their impact on system performance. Simulation can also be used to study systems in the
design stage, before such systems are built. Thus, simulation modeling can be used both as an analysis tool
for predicting the effect of changes to existing systems and as a design tool to predict the performance of
new systems under varying sets of circumstances.

In some instances, a model can be developed which is simple enough to be “solved” by mathematical
methods. Such solutions might be found by the use of differential calculus, probability theory, algebraic
methods, or other mathematical techniques. The solution usually consists of one or more numerical param-
eters, which are called measures of performance of the system. However, many real-world systems are so
complex that models of these systems are virtually impossible to solve mathematically. In these instances,
numerical, computer-based simulation can be used to imitate the behavior of the system over time. From the
simulation, data are collected as if a real system were being observed. This simulation-generated data is used
to estimate the measures of performance of the system.

This book provides an introductory treatment of the concepts and methods of one form of simulation
modeling—discrete-event simulation modeling. The first chapter initially discusses when to use simulation,
its advantages and disadvantages, and actual areas of its application. Then the concepts of system and model
are explored. Finally, an outline is given of the steps in building and using a simulation model of a system.

3



4 DISCRETE-EVENT SYSTEM SIMULATION

1.1 WHEN SIMULATION IS THE APPROPRIATE TOOL

The availability of special-purpose simulation languages, of massive computing capabilities at a decreasing
cost per operation, and of advances in simulation methodologies have made simulation one of the most
widely used and accepted tools in operations research and systems analysis. Circumstances under which sim-
ulation is the appropriate tool to use have been discussed by many authors, from Naylor et al. [1966] to
Shannon [1998]. Simulation can be used for the following purposes:

1. Simulation enables the study of, and experimentation with, the internal interactions of a complex
system or of a subsystem within a complex system.
2. Informational, organizational, and environmental changes can be simulated, and the effect of these
alterations on the model’s behavior can be observed.
3. The knowledge gained during the designing of a simulation model could be of great value toward
suggesting improvement in the system under investigation.
4. Changing simulation inputs and observing the resulting outputs can produce valuable insight into
which variables are the most important and into how variables interact.
5. Simulation can be used as a pedagogical device to reinforce analytic solution methodologies.
6. Simulation can be used to experiment with new designs or policies before implementation, so as to
prepare for what might happen.
7. Simulation can be used to verify analytic solutions.
8. Simulating different capabilities for a machine can help determine the requirements on it.
9. - §amulation models designed for training make learning possible without the cost and disruption of
on-the-job instruction.
10. Animation shows a system in simulated operation so that the plan can be visualized.
11. The modern system (factory, wafer fabrication plant, service organization, etc.) is so complex that
its internal interactions can be treated only through simulation.

1.2 WHEN SIMULATION IS NOT APPROPRIATE

This section is based on an article by Banks and Gibson [1997], who gave ten rules for evaluating when sim-
ulation is not appropriate. The first rule indicates that simulation should not be used when the problem can
be solved by common sense. An example is given of an automobile tag facility serving customers who arrive
randomly at an average rate of 100/hour and are served at a mean rate of 12/hour. To determine the mini-
mum number of servers needed, simulation is not necessary. Just compute 100/12 = 8.33 indicating that nine
or more servers are needed.

The second rule says that simulation should not be used if the problem can be solved analytically. For
example, under certain conditions, the average waiting time in the example above can be found from curves
that were developed by Hillier and Lieberman [2002].

The next rule says that simulation should not be used if it is easier to perform direct experiments. An
example of a fast-food drive-in restaurant is given where it was less expensive to stage a person taking orders
using a hand-held terminal and voice communication to determine the effect of adding another order station
on customer waiting time.

The fourth rule says not to use simulation if the costs exceed the savings. There are many steps in com-
pleting a simulation, as will be discussed in Section 1.11, and these must be done thoroughly. If a simula-
tion study costs $20,000 and the savings might be $10,000, simulation would not be appropriate.

Rules five and six indicate that simulation should not be performed if the resources or time are not available.
If the simulation is estimated to cost $20,000 and there is only $10,000 available, the suggestion is not to
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venture into a simulation study. Similarly, if a decision in needed in two weeks and a simulation will take a
month, the simulation study is not advised.

Simulation takes data, sometimes lots of data. If no data is available, not even estimates, simulation is
not advised. The next rule concerns the ability to verify and validate the model. If there is not enough time
or if the personnel are not available, simulation is not appropriate.

If managers have unreasonable expectations, if they ask for too much too soon, or if the power of sim-
ulation is overestimated, simulation might not be appropriate.

Last, if system behavior is too complex or can’t be defined, simulation is not appropriate. Human behav-
ior is sometimes extremely complex to model.

1.3 ADVANTAGES AND DISADVANTAGES OF SIMULATION

Simulation is intuitively appealing to a client because it mimics what happens in a real system or what is
perceived for a system that is in the design stage. The output data from a simulation should directly corre-
spond to the outputs that could be recorded from the real system. Additionally, it is possible to develop a
simulation model of a system without dubious assumptions (such as the same statistical distribution for every
random variable) of mathematically solvable models. For these and other reasons, simulation is frequently
the technique of choice in problem solving.

In contrast to optimization models, simulation models are “run” rather than solved. Given a particular
set of input and model characteristics, the model is run and the simulated behavior is observed. This process
of changing inputs and model characteristics results in a set of scenarios that are evaluated. A good solution,
either in the analysis of an existing system or in the design of a new system, is then recommended for
implementation.

Simulation has many advantages, but some disadvantages. These are listed by Pegden, Shannon, and
Sadowski [1995]. Some advantages are these:

1. New policies, operating procedures, decision rules, information flows, organizational procedures,
and so on can be explored without disrupting ongoing operations of the real system.

2. New hardware designs, physical layouts, transportation systems, and so on can be tested without
committing resources for their acquisition.

3. Hypotheses about how or why certain phenomena occur can be tested for feasibility.

4. Time can be compressed or expanded to allow for a speed-up or slow-down of the phenomena under
investigation.

5. Insight can be obtained about the interaction of variables.

6. Insight can be obtained about the importance of variables to the performance of the system.

7. Bottleneck analysis can be performed to discover where work in process, information, materials, and
so on,are being delayed excessively.

8. A simulation study can help in understanding how the system operates rather than how individuals
think the system operates.

9. “What if” questions can be answered. This is particularly useful in the design of new systems.

Some disadvantages are these:
1. Model building requires special training. It is an art that is learned over time and through experience.

Furthermore, if two models are constructed by different competent individuals, they might have
similarities, but it is highly unlikely that they will be the same.
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2. Simulation results can be difficult to interpret. Most simulation outputs are essentially random vari-
ables (they are usually based on random inputs), so it can be hard to distinguish whether an obser-
vation is a result of system interrelationships or of randomness.

3. Simulation modeling and analysis can be time consuming and expensive. Skimping on resources for
modeling and analysis could result in a simulation model or analysis that is not sufficient to the task.

4. Simulation is used in some cases when an analytical solution is possible, or even preferable, as was
discussed in Section 1.2. This might be particularly true in the simulation of some waiting lines
where closed-form queueing models are available.

In defense of simulation, these four disadvantages, respectively, can be offset as follows:

1. Vendors of simulation software have been actively developing packages that contain models that
need only input data for their operation. Such models have the generic tag “simulator” or “template.”

2. Many simulation software vendors have developed output-analysis capabilities within their packages
for performing very thorough analysis.

3. Simulation can be performed faster today than yesterday and will be even faster tomorrow, because
of advances in hardware that permit rapid running of scenarios and because of advances in many sim-
ulation packages. For example, some simulation software contains constructs for modeling material
handling that uses such transporters as fork-lift trucks, conveyors, and automated guided vehicles.

4. Closed-form models are not able to analyze most of the complex systems that are encountered in
practice. In many years of consulting practice by two of the authors, not one problem was encoun-
tered that could have been solved by a closed-form solution.

1.4 AREAS OF APPLICATION

The applications of simulation are vast. The Winter Simulation Conference (WSC) is an excellent way to learn
more about the latest in simulation applications and theory. There are also numerous tutorials at both the
beginning and the advanced levels. WSC is sponsored by six technical societies and the National Institute
of Standards and Technology (NIST). The technical societies are American Statistical Association (ASA),
Association for Computing Machinery/Special Interest Group on Simulation (ACM/SIGSIM), Institute of
Electrical and Electronics Engineers: Computer Society (IEEE/CS), Institute of Electrical and Electronics
Engineers: Systems, Man and Cybernetics Society (IEEE/SMCS), Institute of Industrial Engineers (IIE),
Institute for Operations Research and the Management Sciences: College on Simulation (INFORMS/CS) and
The Society for Computer Simulation (SCS). Note that IEEE is represented by two bodies. Information about
the upcoming WSC can be obtained from www.wintersim.org. WSC programs with full papers are
available from www . informs-cs.org/wscpapers . html. Some presentations, by area, from a recent
WSC are listed next:

Manufacturing Applications
Dynamic modeling of continuous manufacturing systems, using analogies to electrical systems
Benchmarking of a stochastic production planning model in a simulation test bed
Paint line color change reduction in automobile assembly
Modeling for quality and productivity in steel cord manufacturing
Shared resource capacity analysis in biotech manufacturing
Neutral information model for simulating machine shop operations
Semiconductor Manufacturing
Constant time interval production planning with application to work-in-process control
Accelerating products under due-date oriented dispatching rules
Design framework for automated material handling systems in 300-mm wafer fabrication factories
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Making optimal design decisions for next-generation dispensing tools
Application of cluster tool modeling in a 300-mm wafer fabrication factory
Resident-entity based simulation of batch chamber tools in 300-mm semiconductor manufacturing
Construction Engineering and Project Management
Impact of multitasking and merge bias on procurement of complex equipment
Application of lean concepts and simulation for drainage operations maintenance crews
Building a virtual shop model for steel fabrication
Simulation of the residential lumber supply chain
Military Applications
Frequency-based design for terminating simulations: A peace-enforcement example
A multibased framework for supporting military-based interactive simulations in 3D environments
Specifying the behavior of computer-generated forces without programming
Fidelity and validity: Issues of human behavioral representation
Assessing technology effects on human performance through trade-space development and evalu-
ation
Impact of an automatic logistics system on the sortie-generation process
Research plan development for modeling and simulation of military operations in urban terrain
Logistics, Supply Chain, and Distribution Applications
Inventory analysis in a server—computer manufacturing environment
Comparison of bottleneck detection methods for AGV systems
Semiconductor supply-network simulation
Analysis of international departure passenger flows in an airport terminal
Application of discrete simulation techniques to liquid natural gas supply chains
Online simulation of pedestrian flow in public buildings
Transportation Modes and Traffic
Simulating aircraft-delay absorption
Runway schedule determination by simulation optimization
Simulation of freeway merging and diverging behavior
Modeling ambulance service of the Austrian Red Cross
Simulation modeling in support of emergency firefighting in Norfolk
Modeling ship arrivals in ports
Optimization of a barge transportation system for petroleum delivery
Iterative optimization and simulation of barge traffic on an inland waterway
Business Process Simulation
Agent-based modeling and simulation of store performance for personalized pricing
Visualization of probabilistic business models
Modeling and simulation of a telephone call center
Using simulation to approximate subgradients of convex performance measures in service systems
Simulation’s role in baggage screening at airports
Human-fatigue risk simulations in continuous operations
Optimization of a telecommunications billing system
Segmenting the customer base for maximum returns
Health Care
Modeling front office and patient care in ambulatory health care practices
Evaluation of hospital operations between the emergency department and a medical telemetry unit
Estimating maximum capacity in an emergency room
Reducing the length of stay in an emergency department
Simulating six-sigma improvement ideas for a hospital emergency department
A simulation—integer-linear-programming-based tool for scheduling emergency room staff
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Some general trends in simulation applications are as follows: At present, simulation for risk analysis is
growing, including in such areas as insurance, options pricing, and portfolio analysis. Another growing area
is call-center analysis, which is not amenable to queuing models because of its complexity. Simulation of
large-scale systems such as the internet backbone, wireless networks, and supply chains are growing as hard-
ware and software increase their capability to handle extremely large numbers of entities in a reasonable time.

Lastly, simulation models of automated material handling systems (AMHS) are being used as test beds
for the development and functional testing of control-system software. Called an emulation, the simulation
model is connected in real time to the control-system software or to a software emulator; it is used to provide
the same responses to a control system as the real AMHS does (for example, a box blocking or clearing a
photo eye, or a command to start picking an order). Software development can begin much earlier during
AMHS installation and commissioning, to reduce the time spent in the field on trying to debug control soft-
ware while attempting to ramp up a new system or continue running an existing one. Models have been
driven by control systems at various levels—from high-level supervisory systems, such as warehouse
management systems (WMS) or AGV dispatching systems, to such low-level control as programmable logic
controllers (PLCs) controlling merges on a conveyor system.

1.5 SYSTEMS AND SYSTEM ENVIRONMENT

To model a system, it is necessary to understand the concept of a system and the system boundary. A system
is defined as a group of objects that are joined together in some regular interaction or interdependence toward
the accomplishment of some purpose. An example is a production system manufacturing automobiles. The
machines, component parts, and workers operate jointly along an assembly line to produce a high-quality
vehicle.

A system is often affected by changes occurring outside the system. Such changes are said to occur in
the system environment [Gordon, 1978]. In modeling systems, it is necessary to decide on the boundary
between the system and its environment. This decision may depend on the purpose of the study.

In the case of the factory system, for example, the factors controlling the arrival of orders may be con-
sidered to be outside the influence of the factory and therefore part of the environment. However, if the effect
of supply on demand is to be considered, there will be a relationship between factory output and arrival of
orders, and this relationship must be considered an activity of the system. Similarly, in the case of a bank
system, there could be a limit on the maximum interest rate that can be paid. For the study of a single bank,
this would be regarded as a constraint imposed by the environment. In a study of the effects of monetary laws
on the banking industry, however, the setting of the limit would be an activity of the system. [Gordon, 1978]

1.6 COMPONENTS OF A SYSTEM

In order to understand and analyze a system, a number of terms need to be defined. An entity is an object of
interest in the system. An artribute is a property of an entity. An activity represents a time period of speci-
fied length. If a bank is being studied, customers might be one of the entities, the balance in their checking
accounts might be an attribute, and making deposits might be an activity.

The collection of entities that compose a system for one study might only be a subset of the overall
system for another study [Law and Kelton, 2000]. For example, if the aforementioned bank is being studied
to determine the number of tellers needed to provide for paying and receiving, the system can be defined
as that portion of the bank consisting of the regular tellers and the customers waiting in line. If the purpose
of the study is expanded to determine the number of special tellers needed (to prepare cashier’s checks, to
sell traveler’s checks, etc.), the definition of the system must be expanded.
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The state of a system is defined to be that collection of variables necessary to describe the system at any
time, relative to the objectives of the study. In the study of a bank, possible state variables are the number of
busy tellers, the number of customers waiting in line or being served, and the arrival time of the next cus-
tomer. An event is defined as an instantaneous occurrence that might change the state of the system. The term
endogenous is used to describe activities and events occurring within a system, and the term exogenous is
used to describe activities and events in the environment that affect the system. In the bank study, the arrival
of a customer is an exogenous event, and the completion of service of a customer is an endogenous event.

Table 1.1 lists examples of entities, attributes, activities, events, and state variables for several systems.
Only a partial listing of the system components is shown. A complete list cannot be developed unless the
purpose of the study is known. Depending on the purpose, various aspects of the system will be of interest,
and then the listing of components can be completed.

1.7 DISCRETE AND CONTINUOUS SYSTEMS

Systems can be categorized as discrete or continuous. “Few systems in practice are wholly discrete or con-
tinuous, but since one type of change predominates for most systems, it will usually be possible to classify
a system as being either discrete or continuous” [Law and Kelton, 2000]. A discrete system is one in which
the state variable(s) change only at a discrete set of points in time. The bank is an example of a discrete
system: The state variable, the number of customers in the bank, changes only when a customer arrives or
when the service provided a customer is completed. Figure 1.1 shows how the number of customers changes
only at discrete points in time.

A continuous system is one in which the state variable(s) change continuously over time. An example
is the head of water behind a dam. During and for some time after a rain storm, water flows into the lake
behind the dam. Water is drawn from the dam for flood control and to make electricity. Evaporation also
decreases the water level. Figure 1.2 shows how the state variable head of water behind the dam changes for
this continuous system.

1.8 MODEL OF A SYSTEM

Sometimes it is of interest to study a system to understand the relationships between its components or to
predict how the system will operate under a new policy. To study the system, it is sometimes possible to
experiment with the system itself. However, this is not always possible. A new system might not yet exist; it
could be in only hypothetical form or at the design stage. Even if the system exists, it might be impractical
to experiment with it. For example, it might not be wise or possible to double the unemployment rate to dis-
cover the effect of employment on inflation. In the case of a bank, reducing the numbers of tellers to study
the effect on the length of waiting lines might infuriate the customers so greatly that they move their accounts
to a competitor. Consequently, studies of systems are often accomplished with a model of a system.

We had a consulting job for the simulation of a redesigned port in western Australia. At $200 millions
for a loading/unloading berth, it’s not advisable to invest that amount only to find that the berth is inadequate
for the task.

A model is defined as a representation of a system for the purpose of studying the system. For most stud-
ies, it is only necessary to consider those aspects of the system that affect the problem under investigation.
These aspects are represented in a model of the system; the model, by definition, is a simplification of the
system. On the other hand, the model should be sufficiently detailed to permit valid conclusions to be drawn
about the real system. Different models of the same system could be required as the purpose of investigation
changes.
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N W

in line or being served

—

Number of customers waiting

Time t

Figure 1.1 Discrete-system state variable.

Head of water behind the dam

Time t

Figure 1.2 Continuous-system state variable.

Just as the components of a system were entities, attributes, and activities, models are represented
similarly. However, the model contains only those components that are relevant to the study. The components
of a model are discussed more extensively in Chapter 3.

1.9 TYPES OF MODELS

Models can be classified as being mathematical or physical. A mathematical model uses symbolic notation
and mathematical equations to represent a system. A simulation model is a particular type of mathematical
model of a system.

Simulation models may be further classified as being static or dynamic, deterministic or stochastic, and
discrete or continuous. A static simulation model, sometimes called a Monte Carlo simulation, represents a
system at a particular point in time. Dynamic simulation models represent systems as they change over time.
The simulation of a bank from 9:00 A.M. to 4:00 P.M. is an example of a dynamic simulation.

Simulation models that contain no random variables are classified as deterministic. Deterministic mod-
els have a known set of inputs, which will result in a unique set of outputs. Deterministic arrivals would occur
at a dentist’s office if all patients arrived at the scheduled appointment time. A stochastic simulation model
has one or more random variables as inputs. Random inputs lead to random outputs. Since the outputs are
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random, they can be considered only as estimates of the true characteristics of a model. The simulation of
a bank would usually involve random interarrival times and random service times. Thus, in a stochastic
simulation, the output measures—the average number of people waiting, the average waiting time of a
customer—must be treated as statistical estimates of the true characteristics of the system.

Discrete and continuous systems were defined in Section 1.7. Discrete and continuous models are
defined in an analogous manner. However, a discrete simulation model is not always used to model a dis-
crete system, nor is a continuous simulation model always used to model a continuous system. Tanks and
pipes are modeled discretely by some software vendors, even though we know that fluid flow is continuous.
In addition, simulation models may be mixed, both discrete and continuous. The choice of whether to use a
discrete or continuous (or both discrete and continuous) simulation model is a function of the characteristics
of the system and the objective of the study. Thus, a communication channel could be modeled discretely
if the characteristics and movement of each message were deemed important. Conversely, if the flow of
messages in aggregate over the channel were of importance, modeling the system via continuous simulation
could be more appropriate. The models considered in this text are discrete, dynamic, and stochastic.

1.10 DISCRETE-EVENT SYSTEM SIMULATION

This is a textbook about discrete-event system simulation. Discrete-event systems simulation is the model-
ing of systems in which the state variable changes only at a discrete set of points in time. The simulation
models are analyzed by numerical methods rather than by analyiical methods. Analytical methods employ
the deductive reasoning of mathematics to “solve” the model. For example, differential calculus can be used
to compute the minimum-cost policy for some inventory models. Numerical methods employ computational
procedures to “solve” mathematical models. In the case of simulation models, which employ numerical
methods, models are “run” rather than solved—that is, an artificial history of the system is generated from
the model assumptions, and observations are collected to be analyzed and to estimate the true system
performance measures. Real-world simulation models are rather large, and the amount of data stored and
manipulated is vast, so such runs are usually conducted with the aid of a computer. However, much insight
can be obtained by simulating small models manually.

In summary, this textbook is about discrete-event system simulation in which the models of interest are
analyzed numerically, usually with the aid of a computer.

1.11 STEPS IN A SIMULATION STUDY

Figure 1.3 shows a set of steps to guide a model builder in a thorough and sound simulation study. Similar
figures and discussion of steps can be found in other sources [Shannon, 1975; Gordon, 1978; Law and
Kelton, 2000]. The number beside each symbol in Figure 1.3 refers to the more detailed discussion in the
text. The steps in a simulation study are as follows:

Problem formulation. Every study should begin with a statement of the problem. If the statement
is provided by the policymakers, or those that have the problem, the analyst must ensure that the problem
being described is clearly understood. If a problem statement is being developed by the analyst, it is important
that the policymakers understand and agree with the formulation. Although not shown in Figure 1.3, there
are occasions where the problem must be reformulated as the study progresses. In many instances, policy-
makers and analysts are aware that there is a problem long before the nature of the problem is known.

Setting of objectives and overall project plan. The objectives indicate the questions to be
answered by simulation. At this point, a determination should be made concerning whether simulation is the
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Figure 1.3 Steps in a simulation study.
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appropriate methodology for the problem as formulated and objectives as stated. Assuming that it is decided
that simulation is appropriate, the overall project plan should include a statement of the alternative systems to
be considered and of a method for evaluating the effectiveness of these alternatives. It should also include
the plans for the study in terms of the number of people involved, the cost of the study, and the number of
days required to accomplish each phase of the work, along with the results expected at the end of each stage.

Model conceptualization. The construction of a model of a system is probably as much art as sci-
ence. Pritsker [1998] provides a lengthy discussion of this step. “Although it is not possible to provide a set
of instructions that will lead to building successful and appropriate models in every instance, there are some
generai guidelines that can be followed” [Morris, 1967). The art of modeling is enhanced by an ability to
abstract the essential features of a problem, to select and modify basic assumptions that characterize the sys-
tem, and then to enrich and elaborate the model until a useful approximation results. Thus, it is best to start
with a simple model and build toward greater complexity. However, the model complexity need not exceed
that required to accomplish the purposes for which the model is intended. Violation of this principle will only
add to model-building and computer expenses. It is not necessary to have a one-to-one mapping between the
mode! and the real systemn. Only the essence of the real system is needed.

It is advisable to involve the model user in model conceptualization. Involving the model user will both
enhance the quality of the resulting model and increase the confidence of the model user in the application
of the model. (Chapter 2 describes a number of simulation models. Chapter 6 describes queueing models that
can be solved analytically. However, only experience with real systems—versus textbook problems—can
“teach” tne art of model building.)

Data collection. There is a constant interplay between the construction of the model and the col-
lection of the needed input data [Shannon, 1975]. As the complexity of the model changes, the required data
elements can also change. Also, since data collection takes such a large portion of the total time required to
perform a simulation, it is necessary to begin it as early as possible, usually together with the early stages of
model building.

The objectives of the study dictate, in a large way, the kind of data to be collected. In the study of a bank,
for example, if the desire is to learn about the length of waiting lines as the number of tellers change,
the types of data needed would be the distributions of interarrival times (at different times of the day), the
service-time distributions for the tellers, and historic distributions on the lengths of waiting lines under varying
conditions. This last type of data will be used to validate the simulation model. (Chapter 9 discusses data
collection and data analysis; Chapter 5 discusses statistical distributions that occur frequently in simulation
modeling. See also an excellent discussion by Henderson {2003].)

Model translation. Most real-world systems result in models that require a great deal of informa-
tion storage and computation, so the model must be entered into a computer-recognizable format. We use the
term “program” even though it is possible to accomplish the desired result in many instances with little or
no actual coding. The modeler must decide whether to program the model in a simulation language, such as
GPSS/H (discussed in Chapter 4), or to use special-purpose simulation software. For manufacturing and
material handling, Chapter 4 discusses Arena®, AutoMod™, Extend™, Flexsim, MicroSaint, ProModel®,
Quest®, SIMULS®, and WITNESS™. Simulation languages are powerful and flexible. However, if the
problem is amenable to solution with the simulation software, the model development time is greatly
reduced. Furthermore, most of the simulation-software packages have added features that enhance their flex-
ibility, although the amount of flexibility varies greatly.

Verified? Verification pertains to the computer program prepared for the simulation model. Is the
computer program performing properly? With complex models, it is difficult, if not impossible, to translate
a model successfully in its entirety without a good deal of debugging; if the input parameters and logical
structure of the model are correctly represented in the computer, verification has been completed. For the
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most part, common sense is used in completing this step. (Chapter 10 discusses verification of simulation
models, and Balci [2003] also discusses this topic.)

Validated? Validation usually is achieved through the calibration of the model, an iterative process
of comparing the model against actual system behavior and using the discrepancies between the two, and the
insights gained, to improve the model. This process is repeated until model accuracy is judged acceptable. In
the example cf a bank previously mentioned, data was collected concerning the length of waiting lines under
current conditions. Does the simulation model replicate this system measure? This is one means of validation.
(Chapter 10 discusses the validation of simulation models, and Balci [2003] also discusses this topic.)

Experimental design. The alternatives that are to be simulated must be determined. Often, the
decision concerning which alternatives to simulate will be a function of runs that have been completed and
analyzed. For each system design that is simulated, decisions need to be made concerning the length of the
initialization period, the length of simulation runs, and the number of replications to be made of each run.
(Chapters 11 and 12 discuss issues associated with the experimental design, and Kleijnen [1998] discusses
this topic extensively.)

Production runs and analysis. Production runs, and their subsequent analysis, are used to esti-
mate measures of performance for the system designs that are being simulated. (Chapters 11 and 12 discuss
the analysis of simulation experiments, and Chapter 4 discusses software to aid in this step, including
AutoStat (in AutoMod), OptQuest (in several pieces of simulation software), SimRunner (in ProModel), and
WITNESS Optimizer {in WITNESS).

More Runs? Given the analysis of runs that have been completed, the analyst determines whether
additional runs are needed and what design those additional experiments should follow.

Documentation and reporting. There are two types of documentation: program and progress.
Program documentation is necessary for numerous reasons. If the program is going to be used again by the
same or different analysts, it could be necessary to understand how the program operates. This will create
confidence in the program, so that model users and policymakers can make decisions based on the analysis.
Also, if the program is to be modified by the same or a different analyst, this step can be greatly facilitated
by adequate documentation. One experience with an inadequately documented program is usually enough to
convince an analyst of the necessity of this important step. Another reason for documenting a program is
so that model users can change parameters at will in an effort to learn the relationships between input para-
meters and output measures of performance or to discover the input parameters that “optimize™ some output
measure of performance.

Musselman [1998] discusses progress reports that provide the important, written history of a simulation
project. Project reports give a chronology of work done and decisions made. This can prove to be of great
value in keeping the project on course.

Musselman suggests frequent reports (monthly, at least) so that even those not involved in the day-to-
day operation can keep abreast. The awareness of these others can often enhance the successful completion
of the project by surfacing misunderstandings early, when the problem can be solved easily. Musselman also
suggests maintaining a project log providing a comprehensive record of accomplishments, change requests,
key decisions, and other items of importance.

On the reporting side, Musselman suggests frequent deliverables. These may or may not be the results
of major accomplishments. His maxim is that “it is better to work with many intermediate milestones than
with one absolute deadline.” Possibilities prior to the final report include a model specification, prototype
demonstrations, animations, training results, intermediate analyses, program documentation, progress
reports, and presentations. He suggests that these deliverables should be timed judiciously over the life of
the project.
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The result of all the analysis should be reported clearly and concisely in a final report. This will enable
the model users (now, the decision makers) to review the final formulation, the alternative systems that were
addressed, the criterion by which the alternatives were compared, the results of the experiments, and the recom-
mended solution to the problem. Furthermore, if decisions have to be justified at a higher level, the final
report should provide a vehicle of certification for the model user/decision maker and add to the credibility
of the model and of the model-building process.

Implementation. The success of the implementation phase depends on how well the previous 11
steps have been performed. It is also contingent upon how thoroughly the analyst has involved the ultimate
model user during the entire simulation process. If the model user has been thoroughly involved during the
model-building process and if the model user understands the nature of the model and its outputs, the like-
lihood of a vigorous implementation is enhanced {Pritsker, 1995]. Conversely, if the model and its underlying
assumptions have not been properly communicated, implementation will probably suffer, regardless of the
simulation model’s validity.

The simulation-model building process shown in Figure 1.3 can be broken down into four phases. The
first phase, consisting of steps 1 (Problem Formulation) and 2 (Setting of Objective and Overall Design), is
a period of discovery or orientation. The initial statement of the problem is usually quite “fuzzy,” the initial
objectives will usually have to be reset, and the original project plan will usually have to be fine-tuned. These
recalibrations and clarifications could occur in this phase, or perhaps will occur after or during another phase
(i.e., the analyst might have to restart the process).

The second phase is related to model building and data collection and includes steps 3 (Model
Conceptualization), 4 (Data Collection), 5 (Model Translation), 6 (Verification), and 7 (Validation). A con-
tinuing interplay is required among the steps. Exclusion of the model user during this phase can have dire
implications at the time of implementation.

The third phase concerns the running of the model. It involves steps 8 (Experimental Design), 9
(Production Runs and Analysis), and 10 (Additional Runs). This phase must have a thoroughly conceived
plan for experimenting with the simulation model. A discrete-event stochastic simulation is in fact a statis-
tical experiment. The output variables are estimates that contain random error, and therefore a proper statis-
tical analysis is required. Such a philosophy is in contrast to that of the analyst who makes a single run and
draws an inference from that single data point.

The fourth phase, implementation, involves steps 11 (Documentation and Reporting) and 12
(Implementation). Successful implementation depends on continual involvement of the model user and on
the successful completion of every step in the process. Perhaps the most crucial point in the entire process
is step 7 (Validation), because an invalid model is going to lead to erroneous results, which, if implemented,
could be dangerous, costly, or both.
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EXERCISES

1. Name entities, attributes, activities, events, and state variables for the following systems:

(a) University library
(b) Bank

(¢) Call center

(d) Hospital blood bank
(e) Departmental store
(f) Fire service station
(g) Airport

(h) Software organization

2. Consider the simulation process shown in Figure 1.3.

(a) Reduce the steps by at least two by combining similar activities. Give your rationale.
(b) Increase the steps by at least two by separating current steps or enlarging on existing steps. Give
your rationale.

3. A simulation of a major traffic intersection is to be conducted, with the objective of improving the cur-
rent traffic flow. Provide three iterations, in increasing order of complexity, of steps 1 and 2 in the sim-
ulation process of Figure 1.3.

4. A simulation is to be conducted of cooking a spaghetti dinner to discover at what time a person should
start in order to have the meal on the table by 7:00 PM. Read a recipe for preparing a spaghetti dinner
(or ask a friend or relative for the recipe). As best you can, trace what you understand to be needed, in
the data-collection phase of the simulation process of Figure 1.3, in order to perform a simulation
in which the model includes each step in the recipe. What are the events, activities, and state variables
in this system?

S. List down the events and activities applying for master’s program in a university.

6. Read an article on the application of simulation related to your major area of study or interest, in the
current WSC Proceedings, and prepare a report on how the author accomplishes the steps given in
Figure 1.3.
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10.

11.
12.
13.

. Get a copy of a recent WSC Proceedings and report on the different applications discussed in an area of

interest to you.

. Get a copy of a recent WSC Proceedings and report on the most unusual application that you can find.

Go to the Winter Simulation Conference website at: www . wintersim. org and address the following:
(a) What advanced tutorials were offered at the previous WSC or are planned at the next WSC?
(b) Where and when will the next WSC be held?

Go to the Winter Simulation Conference website at www . wintersim.org and address the following:

(a) When was the largest (in attendance) WSC, and how many attended?

(b) In what calendar year, from the beginning of WSC, was there no Conference?

(c) What was the largest expanse of time, from the beginning of WSC, between occurrences of the
Conference?

(d) Beginning with the 25th WSC, can you discern a pattern for the location of the Conference?

Search the web for "Applications of discrete simulation" and prepare a report based on the findings.
Search the web for "Manufacturing simulation” and prepare a report based on the findings.

Search the web for "Call center simulation” and prepare a report based on the findings.



Simulation Examples

This chapter presents several examples of simulations that can be performed by devising a simulation table
either manually or with a spreadsheet. The simulation table provides a systematic method for tracking system
state over time. These examples provide insight into the methodology of discrete-systern simulation and the
descriptive statistics used for predicting system performance.

The simulations in this chapter are carried out by following three steps:

1. Determine the characteristics of each of the inputs to the simulation. Quite often, these are modeled
as probability distributions, either continuous or discrete.

2. Construct a simulation table. Each simulation table is different, for each is developed for the prob-
lem at hand. An example of a simulation table is shown in Table 2.1. In this example, there are p
inputs, x,, j= 1, 2,..., p, and one response, ¥ for each of repetitions (or, trials) i =1, 2,..., n. Initialize
the table by filling in the data for repetition 1.

3. For each repetition i, generate a value for each of the p inputs, and evaluate the function, calculat-
ing a value of the response y,. The input values may be computed by sampling values from the
distributions chosen in step 1. A response typically depends on the inputs and one or more previous
responses.

This chapter gives a number of simulation examples in queueing, inventory, reliability, and network
analysis. The two queueing examples provide a single-server and two-server system, respectively. (Chapter 6
provides more insight into queueing models.) The first of the inventory examples involves a problem that
has a closed-form solution; thus, the simulation solution can be compared to the mathematical solution. The
second inventory example pertains to the classic order-level model.

Next, there is an example that introduces the concept of random normal numbers and a model for the
simulation of lead-time demand. The examples conclude with the analysis of a network.

19
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Table 2.1 Simulation Table

Inputs
Response
Repetitions X, X e X, e X, ¥;
1
2
3
n

2.1 SIMULATION OF QUEUEING SYSTEMS

A queueing system is described by its calling population, the nature of the arrivals, the service mechanism,
the system capacity, and the queueing discipline. These attributes of a queueing system are described in
detail in Chapter 6. A simple single-channel queueing system is portrayed in Figure 2.1.

In the single-channel queue, the calling population is infinite; that is, if a unit leaves the calling popula-
tion and joins the waiting line or enters service, there is no change in the arrival rate of other units that could
need service. Arrivals for service occur one at a time in a random fashion; once they join the waiting line,
they are eventually served. In addition, service times are of some random length according to a probability
distribution which does not change over time. The system capacity has no limit, meaning that any number
of units can wait in line. Finally, units are served in the order of their arrival (often called FIFO: first in, first
out) by a single server or channel.

Arrivals and services are defined by the distribution of the time between arrivals and the distribution of
service times, respectively. For any simple single- or multichannel queue, the overall effective arrival rate
must be less than the total service rate, or the waiting line will grow without bound. When queues grow without
bound, they are termed “explosive” or unstable. (In some re-entrant queueing networks in which units return
a number of times to the same server before finally exiting from the system, the condition that arrival rate be
less than service rate might not guarantee stability. See Harrison and Nguyen [1995] for more explanation.
Interestingly, this type of instability was noticed first, not in theory, but in actual manufacturing in semicon-
ductor manufacturing plants.) More complex situations can occur—for example, arrival rates that are greater
than service rates for short periods of time, or networks of queues with routing. However, this chapter sticks
to the most basic queues.

Waiting line
Calling population

Figure 2.1 Queueing system.
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Prior to our introducing several simulations of queueing systems, it is necessary to understand the
concepts of system state, events, and simulation clock. (These concepts are studied systematically in
Chapter 3.) The state of the system is the number of units in the system and the status of the server, busy or
idle. An event is a set of circumstances that causes an instantaneous change in the state of the system. In a
single-channel queueing system, there are only two possible events that can affect the state of the system.
They are the entry of a unit into the system (the arrival event) and the completion of service on a unit (the
departure event). The queueing system includes the server, the unit being serviced (if one is being serviced),
and the units in the queue (if any are waiting). The simulation clock is used to track simulated time.

If a unit has just completed service, the simulation proceeds in the manner shown in the flow diagram
of Figure 2.2. Note that the server has only two possible states: It is either busy or idle.

The arrival event occurs when a unit enters the system. The flow diagram for the arrival event is shown
in Figure 2.3. The unit will find the server either idle or busy; therefore, either the unit begins service imme-
diately, or it enters the queue for the server. The unit follows the course of action shown in Figure 2.4. If the
server is busy, the unit enters the queue. If the server is idle and the queue is empty, the unit begins service.
It is not possible for the server to be idle while the queue is nonempty.

After the completion of a service, the server either will become idle or will remain busy with the next
unit. The relationship of these two outcomes to the status of the queue is shown in Figure 2.5. If the queue
is not empty, another unit will enter the server and it will be busy. If the queue is empty, the server will be idle

Departure
event

Another
unit waiting
9

Begin server No
idle time

Yes Remove the waiting unit
from the queue

Y

Begin servicing
the unit

Figure 2.2 Service just completed flow diagram.

Arrival
event
No Yes
\ y
Unit enters Unit enters
service queue for
service

Figure 2.3 Unit entering system Hlow diagram.
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Queue status

Not empty Empty
Server Busy Enter queue Enter queue
status Idle Impossible | Enter service

Figure 2.4 Potential unit actions upon arrival.

Queue status

Not empty Empty

Server Busy / /] Impossible

outcomes |  [dle Impossible /// //

Figure 2.5 Server outcomes after the completion of service.

after a service is completed. These two possibilities are shown as the shaded portions of Figure 2.5. It is
impossible for the server to become busy if the queue is empty when a service is completed. Similarly, it is
impossible for the server to be idle after a service is completed when the queue is not empty.

Now, how can the events described above occur in simulated time? Simulations of queueing systems gen-
erally require the maintenance of an event list for determining what happens next. The event list tracks the
future times at which the different types of events occur. Simulations using event lists are described in
Chapter 3. This chapter simplifies the simulation by tracking each unit explicitly. Simulation clock times for
arrivals and departures are computed in a simulation table customized for each problem. In simulation, events
usually occur at random times, the randomness imitating uncertainty in real life. For example, it is not known
with certainty when the next customer will arrive at a grocery checkout counter, or how long the bank teller
will take to complete a transaction. In these cases, a statistical model of the data is developed either from data
collected and analyzed or from subjective estimates and assumptions.

The randomness needed to imitate real life is made possible through the use of “random numbers.”
Random numbers are distributed uniformly and independently on the interval (0, 1). Random digits are
uniformly distributed on the set {0, 1, 2,..., 9}. Random digits can be used to form random numbers by
selecting the proper number of digits for each random number and placing a decimal point to the left of the
value selected. The proper number of digits is dictated by the accuracy of the data being used for input
purposes. If the input distribution has values with two decimal places, two digits are taken from a random
digits table (such as Table A.1) and the decimal point is placed to the left to form a random number.

Random numbers also can be generated in simulation packages and in spreadsheets (such as Excel). For
example, Excel has a macro function called RAND() that returns a “random” number between 0 and 1. When
numbers are generated by using a procedure, they are often referred to as pseudo-random numbers. Because
the procedure is fully known, it is always possible to predict the sequence of numbers that will be generated
prior to the simulation. The most commonly used methods for generating random numbers are discussed in
Chapter 7.

In a single-channel queueing simulation, interarrival times and service times are generated from the dis-
tributions of these random variables. The examples that follow show how such times are generated. For
simplicity, assume that the times between arrivals were generated by rolling a die five times and recording
the up face. Table 2.2 contains a set of five interarrival times generated in this manner. These five interarrival
times are used to compute the arrival times of six customers at the queueing system.
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Table 2.2 Interarrival and Clock Times

Interarrival Arrival
Customer Time Time on Clock
1 — 0
2 2 2
3 4 6
4 1 7
5 2 9
6 6 i5

The first customer is assumed to arrive at clock time 0. This starts the clock in operation. The second
customer arrives two time units later, at clock time 2. The third customer arrives four time units later, at clock
time 6; and so on.

The second time of interest is the service time. Table 2.3 contains service times generated at random
from a distribution of service times. The only possible service times are one, two, three, and four time units.
Assuming that all four values are equally likely to occur, these values could have been generated by placing
the numbers one through four on chips and drawing the chips from a hat with replacement, being sure to
record the numbers selected. Now, the interarrival times and service times must be meshed to simulate the
single-channel queueing system. As is shown in Table 2.4, the first customer arrives at clock time 0 and
immediately begins service, which requires two minutes. Service is completed at clock time 2. The second
customer arrives at clock time 2 and is finished at clock time 3. Note that the fourth customer arrived at clock
time 7, but service could not begin until clock time 9. This occurred because customer 3 did not finish service
until clock time 9.

Table 2.4 was designed specifically for a single-channel queue that serves customers on a first-in—first-out
(FIFO) basis. It keeps track of the clock time at which each event occurs. The second column of Table 2.4
records the clock time of each arrival event, while the last column records the clock time of each departure
event. The occurrence of the two types of events in chronological order is shown in Table 2.5 and Figure 2.6.

It should be noted that Table 2.5 is ordered by clock time, in which case the events may or may not be
ordered by customer number. The chronological ordering of events is the basis of the approach to discrete-
event simulation described in Chapter 3.

Figure 2.6 depicts the number of customers in the system at the various clock times. It is a visual image
of the event listing of Table 2.5. Customer 1 is in the system from clock time 0 to clock time 2. Customer 2
arrives at clock time 2 and departs at clock time 3. No customers are in the system from clock time 3 to clock

Table 2.3 Service Times

Service
Customer Time
i 2
2 1
3 3
4 2
5 1
6 4
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Table 2.4 Simulation Table Emphasizing Clock Times

A B C D E
Arrival Time Service Service Time Service

Customer Time Begins Time Ends
Number (Clock) (Clock) (Duration) (Clock)

1 0 0 2 2

2 2 2 1 3

3 6 6 3 9

4 7 9 2 11

5 9 11 1 12

6 15 15 4 19

Table 2.5 Chronological Ordering of Events

Customer Clock
Event Type Number Time
Arrival 1 0
Departure 1 2
Arrival 2 2
Departure 2 3
Arrival 3 6
Arrival 4 7
Departure 3 9
Arrival 5 9
Departure 4 11
Departure 5 12
Arrival 6 15
Departure 6 19
4
5
Pl
s 2 —
£ 1 i [
= I ! |
REES
S I 1 |
5 | R f_'""‘l""‘{—| P
; N | T . |
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Clock time

Figure 2.6 Number of customers in the system.
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time 6. During some time periods, two customers are in the system, such as at clock time 8, when customers
3 and 4 are both in the system. Also, there are times when events occur simultaneously, such as at clock time 9,
when customer 5 arrives and customer 3 departs.

Example 2.1 follows the logic described above while keeping track of a number of attributes of the system.
Example 2.2 is concerned with a two-channel queueing system. The flow diagrams for a multichannel queueing
system are slightly different from those for a single-channel system. The development and interpretation of
these flow diagrams is left as an exercise for the reader.

Example 2.1: Single-Channel Queue
A small grocery store has only one checkout counter. Customers arrive at this checkout counter at random
times that are from 1 to 8 minutes apart. Each possible value of interarrival time has the same probability of
occurrence, as shown in Table 2.6. The service times vary from 1 to 6 minutes, with the probabilities shown
in Table 2.7. The problem is to analyze the system by simulating the arrival and service of 100 customers.

In actuality, 100 customers is too small a sample size to draw any reliable conclusions. The accuracy of
the results is enhanced by increasing the sample size, as is discussed in Chapter 11. However, the purpose
of the exercise is to demonstrate how simple simulations can be carried out in a table, either manually or with
a spreadsheet, not to recommend changes in the grocery store. A second issue, discussed thoroughly in
Chapter 11, is that of initial conditions. A simulation of a grocery store that starts with an empty system is
not realistic unless the intention is to model the system from startup or to model until steady-state operation
is reached. Here, to keep calculations simple, starting conditions and concerns are overlooked.

Table 2.6 Distribution of Time Between Arrivals

Time between

Arrivals Cumulative Random Digit

(Minutes) Probability Probability Assignment
1 0.125 0.125 001-125
2 0.125 0.250 126-250
3 0.125 0.375 251-375
4 0.125 0.500 376-500
5 0.125 0.625 501-625
6 0.125 0.750 626-750
7 0.125 0.875 751-875
8 0.125 1.000 876000

Table 2.7 Service-Time Distribution

Service Time Cumulative Random Digit
(Minutes) Probability Probability Assignment
1 0.10 0.10 01-10
2 0.20 0.30 11-30
3 0.30 0.60 31-60
4 0.25 0.85 61-85
5 0.10 0.95 86-95
6 0.05 1.00 96-00
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A set of uniformly distributed random numbers is needed to generate the arrivals at the checkout counter.
Such random numbers have the following properties:

1. The set of random numbers is uniformly distributed between 0 and 1.
2. Successive random numbers are independent.

With tabular simulations, random digits such as those found in Table A.1 in the Appendix can be con-
verted to random numbers. Random digits are converted to random numbers by placing a decimal point
appropriately. Since the probabilities in Table 2.6 are accurate to 3 significant digits, three-place random
numbers will suffice. It is necessary to list 99 random numbers to generate the times between arrivals. Why
only 99 numbers? The first arrival is assumed to occur at time 0, so only 99 more arrivals need to be
generated to end up with 100 customers. Similarly, for Table 2.7, two-place random numbers will suffice.

The rightmost two columns of Tables 2.6 and 2.7 are used to generate random arrivals and random service
times. The third column in each table contains the cumulative probability for the distribution. The rightmost
column contains the random digit assignment. In Table 2.6, the first random digit assignment is 001-125.
There are 1000 three-digit values possible (001 through 000). The probability of a time-between-arrival of
1 minute is 0.125, so 125 of the 1000 random digit values are assigned to such an occurrence. Times between
arrival for 99 customers are generated by listing 99 three-digit values from Table A.1 and comparing them
to the random digit assignment of Table 2.6.

For manual simulations, it is good practice to start at a random position in the random digit table and
proceed in a systematic direction, never re-using the same stream of digits in a given problem. If the same
pattern is used repeatedly, bias could result from the same pattern’s being generated.

The time-between-arrival determination is shown in Table 2.8. Note that the first random digits are 064.
To obtain the corresponding time between arrivals, enter the fourth column of Table 2.6 and read 1 minute
from the first column of the table. Alternatively, we see that 0.064 is between the cumulative probabilities
0.001 and 0.125, again resulting in 1 minute as the generated time.

Service times for the first 18 and the 100th customers are shown in Table 2.9. These service times were
generated via the methodology described above, together with the aid of Table 2.7. (The entire table can
be generated by using the Excel spreadsheet for Example 2.1 at www.bcnn.net.) The first customer’s service
time is 4 minutes, because the random digits 84 fall in the bracket 61-85—or, alternatively, because the
derived random number 0.84 falls between the curnulative probabilities 0.61 and 0.85.

Table 2.8 Time-Between-Arrival Determination

Time between Time between

Random Arrivals Random Arrivals

Customer Digits (Minutes) Customer Digits (Minutes)
1 — — 11 413 4
2 064 1 12 462 4
3 112 1 13 843 7
4 678 6 14 738 6
5 289 3 15 359 3
6 871 7 16 888 8
7 583 5 17 902 8
8 139 2 18 212 2
9 423 4 : : :
10 039 1 100 538 5
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Table 2.9 Service Times Generated

Service Service
Random Time Random Time
Customer Digits (Minutes) Customer Digits (Minutes)
1 84 4 11 94 5
2 18 2 12 32 3
3 87 5 13 79 4
4 81 4 14 92 5
5 06 1 15 46 3
6 91 5 16 21 2
7 79 4 17 73 4
8 09 1 18 55 3
9 64 4 : : :
10 38 3 100 26 2

The essence of a manual simulation is the simulation table. These tables are designed for the problem
at hand, with columns added to answer the questions posed. The simulation table for the single-channel
queue, shown in Table 2.10, is an extension of the type of table already seen in Table 2.4. The first step is to
initialize the table by filling in cells for the first customer. The first customer is assumed to arrive at time 0.
Service begins immediately and finishes at time 4. The customer was in the system for 4 minutes. After the
first customer, subsequent rows in the table are based on the random numbers for interarrival time, service
time, and the completion time of the previous customer. For example, the second customer arrives at time 1.
But service could not begin until time 4; the server (checkout person) was busy until that time. The second
customer waited in the queue for three minutes. The second customer was in the system for 5 minutes. Skip
down to the fifth customer. Service ends at time 16, but the sixth customer does not arrive until time 18, at
which time service began. The server (checkout person) was idle for two minutes. This process continues for
all 100 customers. The rightmost two columns have been added to collect statistical measures of performance,
such as each customer’s time in system and the server’s idle time (if any) since the previous customer
departed. In order to compute summary statistics, totals are formed as shown for service times, time customers
spend in the system, idle time of the server, and time the customers wait in the queue.

Some of the findings from the simulation in Table 2.10 are as follows:

1. The average waiting time for a customer is 1.74 minutes. This is computed in the following manner:

Average waitingtime  total time customers wait in queue (minutes)
(minutes)

total numbers of customers

!-7& =1.74 minutes
100

2. The probability that a customer has to wait in the queue is 0.46. This is computed in the following
manner:

numbers of customers who wait

probability (wait)

total number of customers

26 _ 046
100
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3. The proportion of idle time of the server is 0.24. This is computed in the following manner:

probability of idle  total idle time of server (minutes)
 server total run time of simulation (minutes)
=10 504
418

The probability of the server’s being busy is the complement of 0.24, namely, 0.76.
4. The average service time is 3.17 minutes. This is computed in the following manner:

Average service time  total service time (minutes)

(minutes) " total number of customers

= ﬂ = 3.17 minutes
100

"This result can be compared with the expected service time by finding the mean of the service-time
distribution, using the equation

ES)=Y sp(s)

s=0

Applying the expected-value equation to the distribution in Table 2.7 gives

Expected service time =
1(0.10) + 2(0.20) + 3(0.30) + 4(0.25) + 5(0.10) + 6(0.05) = 3.2 minutes

The expected service time is slightly higher than the average service time in the simulation. The
longer the simulation, the closer the average will be to E(S).
S. The average time between arrivals is 4.19 minutes. This is computed in the following manner:

) sum of all times
Average time between _ between arrival (minutes)

arrivals (minutes) " number of arrivals— |

= ﬁ = 4.19 minutes
99

One is subtracted from the denominator because the first arrival is assumed to occur at time 0. This
result can be compared to the expected time between arrivals by finding the mean of the discrete
uniform distribution whose endpoints are a = 1 and b = 8. The mean is given by

atbh 1+8

E(A)= = T = 4.5 minutes

The expected time between arrivals is slightly higher than the average. However, as the simulation
becomes longer, the average value of the time between arrivals should approach the theoretical
mean, E(A).
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6. The average waiting time of those who wait is 3.22 minutes. This is computed in the following manner:

Average waiting time of

those who wait
(minutes) total number of customers that wait

_ total time customers wait in queue (minutes)

1—75 = 3.22 minutes

54

I

7. The average time a customer spends in the system is 4.91 minutes. This can be found in two ways.
First, the computation can be achieved by the following relationship:

Average time customer total time customers spend in the
system (minutes)

spends in the system =

(minutes) total number of customers

= ‘—‘21 = 4.91 minutes
100

The second way of computing this same result is to realize that the following relationship must hold:

Average time average time average time
customer spends _ customer spends customer spends
inthe system ~  waiting in the in service
(minutes) queue (minutes) (minutes)

From findings 1 and 4, this results in
Average time customer spends in the system = 1.74 + 3.17 = 4.91 minutes

A decision maker would be interested in results of this type, but a longer simulation would increase the
accuracy of the findings. However, some tentative inferences can be drawn at this point. About half of the
customers have to wait; however, the average waiting time is not excessive. The server does not have an
undue amount of idle time. More reliable statements about the results would depend on balancing the cost
of waiting against the cost of additional servers.

Excel spreadsheets have been constructed for each of the examples in this chapter. The spreadsheets can
be found at www.bcnn.net. The spreadsheets have a common format. The first sheet is One-Trial. The second
sheet is Experiment. The third sheet is entitled Explain. Here, the logic in the spreadsheet is discussed, and
questions pertaining to that logic are asked of the reader. Use the default seed ‘12345’ to reproduce the
One-Trial output shown in the examples in the text, and use the appropriate number of trials (or replications)
to reproduce the Experiment shown in the text, again using the default seed *12345’.

Exercises relating to the spreadsheets have been prepared also. These are the last set of exercises at the
end of this chapter. The first set of exercises is for manual simulation.

The spreadsheets allow for many entities to flow through the system. (In Example 2.1, the entities are
customers.) For instance, the spreadsheet for Example 2.1 has 100 customers going through the system, and
the number of trials can vary from one to 400. Let’s say that 200 trials are selected. Then, 200 trials of the
simulation, each of 100 customers, will be conducted.



